Eliminating malignant contamination from therapeutic human spermatogonial stem cells.

نویسندگان

  • Serena L Dovey
  • Hanna Valli
  • Brian P Hermann
  • Meena Sukhwani
  • Julia Donohue
  • Carlos A Castro
  • Tianjiao Chu
  • Joseph S Sanfilippo
  • Kyle E Orwig
چکیده

Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4-contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC-/CD49e- (putative spermatogonia) and EpCAM-/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC-/CD49e- fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to-nude mouse xenotransplantation. The EpCAM-/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-3: Identification and Characterization of Repopulating Spermatogonial Stem Cells from The Adult Human Testis

Background: This study was conducted to identify and characterize repopulating spermatogonial stem cells (SSCs) in the adult human testes. Materials and Methods: Testes biopsies from obstructive azoospermic patients and normal segments of human testicular tissue were used. Flow cytometry, real time PCR and immunohistochemical analysis were performed. Purified human spermatogonia were transplant...

متن کامل

O-19: Proliferation of Small Population of Spermatogonial Stem Cells in Azoospermic Patients

Background: With treatment success in young boys with cancer, long-term effects of cancer treatment have found importance in pediatric oncology. Temporary or permanent infertility after treatment is an important subject in childhood and adult cancer patients which decrease quality of life. The one approach to overcome infertility in these cases is to cryopreserve small biopsy testicular tissue ...

متن کامل

O-9: Generation of Haploid Spermatids with Fertilization and Development Capacity from Human Spermatogonial Stem Cells of Cryptorchid Patients

Background Infertility affects around 15% of couples, and male factors account for 50%. Cryptorchidism is one of the most common causes for azoospermia. Generation of functional spermatids from azoospermia patients is of unusual significance for treating male infertility. It has been recently reported by peers and us that human spermatogonial stem cells (SSCs) can be clearly identified and cult...

متن کامل

Isolation and characterization of human spermatogonial stem cells

BACKGROUND To isolate and characterization of human spermatogonial stem cells from stem spermatogonium. METHODS The disassociation of spermatogonial stem cells (SSCs) were performed using enzymatic digestion of type I collagenase and trypsin. The SSCs were isolated by using Percoll density gradient centrifugation, followed by differential surface-attachment method. Octamer-4(OCT4)-positive SS...

متن کامل

Assessment of Culture Condition and In Vitro Colonization Ability of Human Spermatogonial Stem Cells: A Review Article

Spermatogenesis is a highly complex and regulated process in which germ stem cells differentiate into spermatozoa. These stem cells, called spermatogonial stem cells (SSCs), are in the base of seminiferous tubules and have the ability of self-renewal and differentiation into functional germ cells. Due to this ability, SSCs can restore spermatogenesis after testicular damage caused by cytotoxic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 123 4  شماره 

صفحات  -

تاریخ انتشار 2013